

Chemistry Standard level Paper 1

Friday 13 November 2015 (afternoon)

45 minutes

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
- The periodic table is provided for reference on page 2 of this examination paper.
- The maximum mark for this examination paper is [30 marks].

0	2 He 4.00	10 Ne 20.18	18 Ar 39.95	36 Kr 83.80	54 Xe 131.30	86 Rn (222)			
2		9 F 19.00	17 Cl 35.45	35 Br 79.90	53 I 126.90	85 At (210)		71 Lu 174.97	103 Lr (260)
9		8 0 16.00	16 S 32.06	34 Se 78.96	52 Te 127.60	84 Po (210)		70 Yb 173.04	102 No (259)
Ŋ		7 N 14.01	15 P 30.97	33 As 74.92	51 Sb 121.75	83 Bi 208.98		69 Tm 168.93	101 Md (258)
4		6 C 12.01	14 Si 28.09	32 Ge 72.59	50 Sn 118.69	82 Pb 207.19		68 Er 167.26	100 Fm (257)
ę		5 B 10.81	13 Al 26.98	31 Ga 69.72	49 In 114.82	81 Tl 204.37		67 Ho 164.93	99 Es (254)
				30 Zn 65.37	48 Cd 112.40	80 Hg 200.59		66 Dy 162.50	98 Cf (251)
able				29 Cu 63.55	47 Ag 107.87	79 Au 196.97		65 Tb 158.92	97 Bk (247)
The Periodic Table				28 Ni 58.71	46 Pd 106.42	78 Pt 195.09		64 Gd 157.25	96 Cm (247)
Perio				27 Co 58.93	45 Rh 102.91	77 Ir 192.22		63 Eu 151.96	95 Am (243)
The				26 Fe 55.85	44 Ru 101.07	76 Os 190.21		62 Sm 150.35	94 Pu (242)
	_			25 Mn 54.94	43 Tc 98.91	75 Re 186.21		61 Pm 146.92	93 Np (237)
		/ass		24 Cr 52.00	42 Mo 95.94	74 W 183.85		60 Nd 144.24	92 U 238.03
	Atomic number	Element Relative Atomic Mass		23 V 50.94	41 Nb 92.91	73 Ta 180.95		59 Pr 140.91	91 Pa 231.04
	Atom	E Relative		22 Ti 47.90	40 Zr 91.22	72 Hf 178.49		58 Ce 140.12	90 Th 232.04
				21 Sc 44.96	39 Y 88.91	57† La 138.91	89 ‡ Ac (227)	+	++
М		4 Be 9.01	12 Mg 24.31	20 Ca 40.08	38 Sr 87.62	56 Ba 137.34	88 Ra (226)		
~	н н . 1.01	3 Li 6.94	11 Na 22.99	19 K 39.10	37 Rb 85.47	55 Cs 132.91	87 Fr (223)		

- 1. What is the number of atoms of oxygen in 0.250 mol of hydrated zinc nitrate, $Zn(NO_3)_2 \cdot 6H_2O$?
 - A. 3.00
 - B. 12.0
 - C. 1.81×10^{24}
 - D. 7.22×10^{24}
- 2. What is the mass, in g, of 0.500 mol of 1,2-dibromoethane, CH_2BrCH_2Br ? $A_r(H) = 1$; $A_r(C) = 12$; $A_r(Br) = 80$
 - A. 23.5
 - B. 47.0
 - C. 94.0
 - D. 188
- **3.** The equation for the **complete** combustion of propene, C_3H_6 , is shown below.

$$2C_{3}H_{6}(g) + 9O_{2}(g) \rightarrow 6CO_{2}(g) + 6H_{2}O(l)$$

Which mixture, when ignited, will lead to incomplete combustion and the formation of CO(g)?

- A. 2 dm³ of propene and 10 dm³ of oxygen
- B. 0.5 dm³ of propene and 2.3 dm³ of oxygen
- C. 1 dm³ of propene and 4 dm³ of oxygen
- D. $3 dm^3$ of propene and $14 dm^3$ of oxygen
- **4.** What is the percentage yield when 1.1g of ethanal, CH₃CHO, is obtained from 4.6g of ethanol, CH₃CH₂OH? M_r (CH₃CH₂OH) = 46; M_r (CH₃CHO) = 44

$$CH_{3}CH_{2}OH(l) + [O] \rightarrow CH_{3}CHO(l) + H_{2}O(l)$$

- A. $\frac{1.1 \times 46 \times 100}{1.1 \times 46 \times 100}$
- 44×4.6
- B. $\frac{1.1 \times 100}{4.6}$
- $C. \qquad \frac{4.6 \times 44 \times 100}{4.6 \times 1.1}$
- D. $\frac{1.1 \times 46}{44 \times 4.6}$

- 5. Which species has 16 protons and 17 electrons?
 - A. S^{-}
 - B. S
 - C. Cl
 - $\mathsf{D}. \quad \mathsf{Cl}^{\scriptscriptstyle -}$
- 6. Which ion would be deflected most in a mass spectrometer?
 - A. $^{79}Br^+$
 - B. ⁷⁹Br²⁺
 - C. ${}^{81}\text{Br}^+$
 - D. ⁸¹Br²⁺
- 7. Which element has the greatest first ionization energy?
 - A. Al
 - B. Ar
 - C. Cl
 - D. Cs
- 8. Which element produces hydrogen gas at the greatest rate when added to water?
 - A. Ca
 - B. Cs
 - C. Li
 - D. Rb
- 9. Which element forms more than one stable positive ion?
 - A. Ca
 - B. Cr
 - C. Zn
 - D. Ba

- 10. Which statement best describes the lattice structure of solid sodium chloride?
 - A. Each sodium ion is surrounded by one chloride ion.
 - B. Each chloride ion is surrounded by two sodium ions.
 - C. Each chloride ion is surrounded by four sodium ions.
 - D. Each sodium ion is surrounded by six chloride ions.
- 11. Which compound contains covalent bonds?
 - A. CaCO₃
 - B. Ca₃N₂
 - C. CaO
 - D. CaF₂
- **12.** Which molecule is polar?
 - A. C_2H_6
 - B. CH_2Cl_2
 - C. CO₂
 - D. CCl₄
- **13.** Which best describes the bonding in iron?
 - A. Lattice of nuclei in a sea of delocalized electrons
 - B. Lattice of protons in a sea of negative ions
 - C. Lattice of positive ions in a sea of negative ions
 - D. Lattice of positive ions in a sea of delocalized electrons

14. What is correct for the reaction represented in the diagram?

- A. The product is more stable than the reactants and the sign of ΔH is negative.
- B. The product is more stable than the reactants and the sign of ΔH is positive.
- C. The product is less stable than the reactants and the sign of ΔH is negative.
- D. The product is less stable than the reactants and the sign of ΔH is positive.
- **15.** What is the heat energy change, in kJ, when the temperature of a 10g piece of tungsten increases from 15 °C to 20 °C? (Specific heat capacity of tungsten = $0.13 \text{ kJ kg}^{-1} \text{K}^{-1}$)
 - A. $\frac{0.13 \times 10 \times (273 + 5)}{1000}$
 - $B. \qquad \frac{0.13 \times 10 \times 5}{1000}$
 - C. $0.13 \times 10 \times (273 + 5)$
 - $D. \qquad 0.13 \times 10 \times 5$
- **16.** Which equation represents the average bond enthalpy of the C–F bond?
 - A. $\frac{1}{4}CF_4(g) \rightarrow \frac{1}{4}C(g) + F(g)$
 - B. $\frac{1}{4}CF_4(g) \rightarrow \frac{1}{4}C(s) + F(g)$
 - $C_{\cdot} \qquad \tfrac{1}{4}\,CF_{_4}(s) \rightarrow \tfrac{1}{4}\,C(s) + \tfrac{1}{2}F_{_2}(g)$
 - D. $\frac{1}{4}CF_4(g) \rightarrow \frac{1}{4}C(g) + \frac{1}{2}F_2(g)$

- 17. Which best describes the particles in a gas when the temperature rises from 23 °C to 46 °C?
 - A. The average energy doubles.
 - B. The average energy increases.
 - C. The average velocity of the particles increases by a factor of $\sqrt{2}$.
 - D. The average energy remains constant but the velocity of some particles increases.
- **18.** Curves I and II represent samples of the same gas at a constant pressure but at different temperatures. The areas under curves I and II are equal. What does curve II represent?

Kinetic energy E

- A. Curve II is at the lower temperature and there are less molecules in the sample.
- B. Curve II is at the lower temperature and there are the same number of molecules in the samples.
- C. Curve II is at the higher temperature and there are more molecules in the sample.
- D. Curve II is at the higher temperature and there are the same number of molecules in the samples.
- 19. What is the equilibrium constant expression for the following reaction?

$$2CH_3OH(g) + O_2(g) \rightleftharpoons 2CH_2O(g) + 2H_2O(g)$$

A.
$$K_{c} = \frac{[CH_{2}O]^{2} + [H_{2}O]^{2}}{[CH_{3}OH]^{2} + [O_{2}]}$$

B.
$$K_{\rm c} = \frac{[\rm OH_2O][\rm H_2O]}{[\rm CH_3OH][O_2]}$$

C.
$$K_{c} = \frac{[CH_{2}O]^{2} [H_{2}O]^{2}}{[CH_{3}OH]^{2} [O_{2}]}$$

D.
$$K_{c} = \frac{[CH_{3}OH][O_{2}]}{[CH_{2}O][H_{2}O]}$$

- 20. Which best describes a reaction in a state of equilibrium?
 - A. The rates of the forward and reverse reactions are zero and the concentrations of products and reactants are equal.
 - B. The rate of the forward reaction equals the rate of the reverse reaction and the concentrations of products and reactants are equal.
 - C. The rates of the forward and reverse reactions are zero and the concentrations of products and reactants are constant.
 - D. The rate of the forward reaction equals the rate of the reverse reaction and the concentrations of products and reactants are constant.
- 21. Which of the following molecules can act as a Lewis acid but not as a Brønsted–Lowry acid?
 - A. BF₃
 - B. PCl₃
 - C. NH₃
 - D. H₂O
- **22.** Which is a $0.001 \text{ mol dm}^{-3}$ solution of a weak acid?

	Conductivity	рН
Α.	poor	5
В.	good	7
C.	poor	10
D.	good	3

23. Which element undergoes reduction in the following reaction?

$$(NH_4)_2Cr_2O_7(s) \rightarrow N_2(g) + 4H_2O(l) + Cr_2O_3(s)$$

- A. Cr
- В. Н
- C. N
- D. 0

- **24.** Which best describes reduction?
 - A. Increase in oxidation number and gain of electrons
 - B. Increase in oxidation number and loss of electrons
 - C. Decrease in oxidation number and gain of electrons
 - D. Decrease in oxidation number and loss of electrons
- 25. Which is not an essential component of a voltaic cell?
 - A. Negative electrode (anode)
 - B. Positive electrode (cathode)
 - C. Electrolyte
 - D. Voltmeter
- **26.** Which pair of compounds can be distinguished by reacting them with dilute bromine water in the dark?
 - A. CH₃CH₂COOH and CH₃CH₂CHO
 - B. CH₃CH₂CHCHCH₃ and CH₃CH₂CH₂CH₂CH₃
 - C. $CH_3CH_2CH(CH_3)_2$ and $CH_3CH_2CH_2CH_2CH_3$
 - D. CH₃CH₂CH₂CHBrCH₃ and CH₃CH₂CHBrCH₂CH₃
- **27.** Which is **not** a possible product when propane, C_3H_8 , reacts with chlorine in sunlight?
 - A. H₂
 - B. C₆H₁₄
 - C. C₃H₇Cl
 - D. Cl₂

- 28. Which compound is most soluble in water?
 - A. CH₃CH₂CHO
 - B. $CH_3CH_2CH_2CHO$
 - C. $CH_3CH_2CO_2H$
 - D. $CH_3CH_2CH_2CO_2H$
- 29. Which are features of successive members of a homologous series?
 - I. Similar chemical properties
 - II. Same general formula
 - III. Differ by $-CH_2-$
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- 30. Which is the best-fit line or best-fit curve for the points plotted on the graph?

